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Abstract 

Estrogenic pollutants, especially conjugated estrogens (CEs), have become an important environmental problem 
due to their potential interference with aquatic ecosystems and threats to human health. As an effective means, 
biodegradation plays a key role in the removal of CEs in natural and artificial systems. After long-term adaptation 
and domestication, the bacterial species that can tolerate and degrade CEs were retained, thereby achieving efficient 
removal of CEs. In this paper, the important role of bacteria in the biodegradation of CEs was reviewed. The bacterial 
species and pure isolates related to the biodegradation of CEs were described in detail. The mechanism of enzymatic 
hydrolysis and the subsequent degradation process of free estrogen were discussed. The biodegradation prod-
ucts and possible degradation pathways of CEs were summarized. In addition, the effects of environmental factors 
on the biodegradation efficiency of CEs were also discussed. This paper aims to summarize the research progress 
of CE biodegradation and put forward future research prospects.
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Introduction
The issue of environmental hormones has garnered 
global attention, particularly steroidal estrogens (SEs), 
which were of particular concern to the public and sci-
entific community [1–3]. Estrogens are found in the 
environment from various sources, including natural 
metabolites and those synthesized by human activities 
[4–9]. Based on their chemical form, estrogens can be 
classified as free estrogens (FEs) and conjugated estro-
gens (CEs), and their properties are closely related to the 
specific structure of the phenolic and alcoholic hydroxyl 
groups [10–14]. The hydroxyl group of FEs is replaced 
by an ester bond, a structural change that masks their 

endocrine-disrupting effects until hydrolysis occurs 
[15–17]. CEs, when hydrolyzed to their free form, can 
exhibit increased estrogenic activity by  102 to  105 times, 
significantly increasing the risk of endocrine disruption 
[18–20]. CEs can enter aquatic environments through 
wastewater treatment plants (WWTPs) and release FEs. 
Even at concentrations below 0.1  ng/L, FEs can cause 
significant estrogenic effects in the aquatic environment 
[21–23]. Therefore, further in-depth research and assess-
ment of the potential impact and effective treatment 
methods for these contaminants are necessary.

The ubiquitous presence of CE pollution and increasing 
regulatory pressures have driven the demand for efficient 
CE treatment technologies. In water or soil matrices, 
some physical and chemical treatment methods, such 
as adsorption and advanced oxidation, have proven to 
be effective [24–28]. However, compared to these meth-
ods, microbial-mediated biodegradation of CEs has 
attracted significant attention because of its low cost and 
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environmental friendliness [29–32]. Biodegradation has 
been confirmed as an effective method for dealing with 
estrogenic pollutants, such as bisphenol A, estradiol, and 
estrone [27, 33–39]. With the development of genetic 
sequencing technology, researchers have identified cer-
tain bacteria from the environment capable of degrading 
CEs and have obtained genomic information on these 
strains [40–42]. These advances have made it possible to 
further explore the biodegradation mechanisms of CEs.

They exhibit significant potential for environmental 
remediation mainly because of their ability to produce 
a variety of enzymes, including hydrolases, peroxidases, 
oxidases, and redox enzymes [36, 43]. These enzymes can 
decompose macromolecular polymers into smaller mono-
mers [44], which can be used as carbon and energy sources 
by microorganisms, and ultimately achieve the mineraliza-
tion of pollutants [36]. Moreover, the biodegradation pro-
cess may also produce by-products, which may be more 
susceptible to natural degradation [36, 40]. Nevertheless, 
there was a scarcity of comprehensive reviews that delve 
into the biodegradation of CEs, emphasizing the pressing 
need for an in-depth examination. Such a review would 
elucidate the most recent advancements in the biodegra-
dation of CEs, offering theoretical insights and a reference 
framework for their management in wastewater systems. 
This paper presents, for the first time, a synthesis of the 
biodegradation byproducts and potential pathways of CEs. 
Additionally, it explores the influence of environmental 
factors, including temperature and dissolved oxygen levels, 
on the efficiency of CE biodegradation.

Characterization of conjugated estrogens in WWTP
SEs, both CEs and FEs, possess a steroidal structure 
similar to that of cholesterol, featuring four carbon rings 
consisting of an aromatic ring (A ring), two hexane rings 
(B and C rings), and a pentane ring (D ring). The struc-
tures of different estrogens are identical in terms of their 
steroidal frameworks, but they vary in their functional 
groups [16, 39]. CEs are formed by the attachment of 
glucuronic acid or sulfate groups to the hydroxyl groups 
of FEs, resulting in G-CEs or S-CEs, with the chemical 
bonds being glycosidic and sulfate ester bonds, respec-
tively [16]. The most studied CEs are those formed with 
a hydroxyl group at the 3rd position, such as estrone-
3-glucuronide (E1-3G), estrone-3-sulfate (E1-3S), 
estradiol-3-glucuronide (E2-3G), estradiol-3-sulfate 
(E2-3S), estriol-3-glucuronide (E3-3G), estriol-3-sulfate 
(E3-3S), ethinylestradiol-3-glucuronide (EE2-3G), and 
ethinylestradiol-3-sulfate (EE2-3S), with some research 
also focusing on CEs at the 17 (16) position of E2, such 
as estradiol-17-glucuronide (E2-17G) [19, 23, 28, 31, 43, 
45–48]. The physicochemical properties, together with 
the structure of common estrogens, are shown in Table 1.

During the wastewater treatment process, CEs can 
dissociate, leading to the release of FEs. Moreover, the 
concentration of CEs in wastewater is at the nanograms 
per liter (ng/L) level, which necessitates detection meth-
ods with higher sensitivity and precision. With the rapid 
development of detection instruments and techniques, 
it is now possible to directly detect and quantify CEs 
[49, 50]. Currently, there is a certain research founda-
tion for determining CEs using chromatography-mass 
spectrometry methods (Table  2). For instance, ultra-
high-performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS) combines chromatogra-
phy with mass spectrometry, enabling the accurate and 
sensitive quantification of target compounds [51–55].

As both a source and sink of steroid estrogens, 
WWTPs play a significant role in the management of 
estrogen pollution [53, 56, 57]. SEs are primarily present 
as FEs and S-CEs in the influent of wastewater treatment 
plants, with the prevalence of sulfate ester conjugates 
reaching 100%. The median concentrations for these con-
jugates are 4.8  ng/L for E1-3S, 5.5  ng/L for E2-3S, and 
14.7 ng/L for E3-3S [58–60]. In contrast, the glucuronide 
conjugates exhibited a lower frequency of detection and 
median concentrations, with values of 4.2 ng/L for E1-3G, 
2.0 ng/L for E2-3G, and 3.0 ng/L for E2-17G [19, 61]. This 
lower prevalence may be attributed to the increased like-
lihood of these conjugates dissociating into their free 
forms via the enzymatic action of β-glucuronidase during 
their transit within the sewer system [62].

Biodegradation mechanism of ces
The biodegradation of CEs is primarily constrained by 
the adsorption process, which involves the transfer from 
the aqueous phase to the sludge phase [65]. This process 
can be effectively characterized by the Freundlich model, 
illustrating the adsorptive capacity of activated sludge for 
CEs (Eq. (1)) [66].

where qe is amount of the substance adsorbed on sludge 
at adsorption equilibrium (mg·g·TSS−1), x is the amount 
of substance adsorbed (g·m−3), m is the amount of adsor-
bent (g·L−1), KF  (mg1−1/n·(m3)1/n·g·TSS−1) and n are con-
stants depending on temperature, the adsorbent, and the 
substance to be adsorbed. The adsorption characteristics 
were described by means of the determination of charac-
teristic values and by the establishment of isotherms.

Under neutral conditions, there is a robust linear corre-
lation between the logarithmic value of the octanol–water 
partition coefficient  (LogKow) of CEs and their adsorption 
affinity for activated sludge [65]. Typically, the adsorptive 
capacity of activated sludge for CEs is less than that for 

(1)qe =
x

m
= KFC

1/n
e
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Table 1 The properties and concentrations of CEs in wastewater

CEs MW  (g/mol) LogKow Structure Influent  (ng/L) Effluent  (ng/L) Reference

E1-3G 446.48 1.58 0.4–6.5 N.D–3.0 [19, 28, 31, 51, 52, 63]

E1-3S 350.43 0.95 4.4–160.0 0.3–27.0 [19, 28, 31, 51, 52, 63]

E2-3G 448.50 2.10 0.3–13.3 N.D–12.0 [52, 53, 63]

E2-3S 352.44 1.46 0.5–79.0 N.D–141.0 [54, 57, 61, 63]

E3-3G 464.50 0.56 ND–19.0 N.D–72 [55, 60, 61]

E3-3S 368.44 0.32 1.4–44.1 0.1–6.5 [19, 49, 51]

EE2-3G 472.52 2.27 15.3–50.1 0.23–5.9 [28]

EE2-3S 376.46 1.63 0.17–0.7 N.D–0.14 [28]

Table 2 Quantitative detection method of CEs

a Limit of quantifications
b Recovery efficiencies
c Relative standard deviations

Compounds Instrument LOQa (ng/L) REb (%) RSDc (%) Reference

E1-3S, E2-3S, E3-3S, E1-3G, E2-3G, E3-3G UPLC-MS/MS 0.07–1.29 81.0–116.1 0.6–13.6 [46]

E1-3S, E2-3S, E3-3S, E1-3G, E2-3G, E3-3G GC–MS 5.40–6.80 73.3–114.9 1.6–19.9 [64]

E1-3S, E2-3S, E3-3S GC–MS – 64.0–112.3 3.6–18.4 [50]

E2-17A, E1-3S, E2-3S E1-3G, E2-17G LC–MS/MS 1.0–30.0 23.0–87.0 2.0–9.0 [54]

EE2-3S, EE2-3G UPLC-MS/MS 0.29–3.23 80.7–117.8 1.6–18.8 [28]

E1-3S, E2-3S, E3-3S E1-3G, E2-3G, E2-17G HPLC–MS/MS 0.04–1.40 61.2–122.4 0.6–8.0 [19]
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their corresponding FEs, attributed to the lower hydro-
phobicity of CEs [66].

The biodegradation mechanisms of CEs involve two 
critical steps (Fig.  1): deconjugation facilitated by enzy-
matic hydrolysis, and the subsequent biodegradation of 
liberated free estrogens [67, 68]. These enzymes, includ-
ing arylsulfatase and β-glucuronidase produced by bacte-
ria, act under specific environmental conditions to cleave 
the ester bonds of estrogen conjugates, thereby releasing 
FEs into the aqueous phase [68–73]. Arylsulfatases are 
a class of enzymes that can break down aromatic sulfate 
esters into aromatic compounds and inorganic sulfates 
[74]. The hydrolysis reaction is represented by Eq.  (2). 
Aromatic compounds such as E2 can continue to be bio-
degraded into smaller organic molecules until completely 
mineralized. In particular, in an anaerobic environment, 
the sulfate produced by the hydrolysis of CEs by arylsul-
fatase may be utilized by sulfate-reducing microorgan-
isms, while the aromatic compounds themselves or the 
smaller organic molecules generated from biodegrada-
tion may serve as electron donors, thereby triggering the 
dissimilatory sulfate reduction process [75–79].

β-glucuronidase is an exoglycosidase that cleaves the 
glucuronic acid–O bond, breaking down glucuron-
ide into the monosaccharide D-glucuronic acid and the 
corresponding aglycone [80]. Both arylsulfatases and 
β-glucuronidases have been detected in wastewater and 
activated sludge. However, the activities of these enzymes 
in activated sludge are much higher than those in waste-
water. Specifically, the activity of β-glucuronidase in 
activated sludge is 18–68 times that in raw wastewater, 
while the activity of arylsulfatase is 1196–2776 times 
higher [31]. Although the activity of β-glucuronidase in 

(2)R-O-SO−

3 +H2O → R-OH+H+
+ SO2−

4

raw wastewater was significantly higher than that of aryl-
sulfatase, the difference in activity between these two 
enzymes in activated sludge was not significant. Moreo-
ver, whether in wastewater or activated sludge, the G-CEs 
of estrogens can be completely hydrolyzed within 24  h 
[19, 81–83]. Although the activity of arylsulfatase in raw 
wastewater is relatively low (only 4.2  U/L, it is not suf-
ficient to significantly hydrolyze estrogen sulfates within 
24 h; the conditions in activated sludge can achieve this 
process within 12 h [31, 43, 73]. This indicates that acti-
vated sludge is an important site for S-CE removal.

The deconjugation efficiency of activated sludge toward 
CEs is predictable, and by utilizing the rate constants 
presented in Table 3 and the model described by Eq. (3) 
[39], the timeframe for deconjugation within the acti-
vated sludge can be projected.

Here, A and A0 are the concentrations of estrogen con-
jugates at time t and zero, t, A, MLSS, and kdec denote the 
reaction time (hours), mixed liquor suspended solid con-
centration (gSS/L), and deconjugation rate constant (L/
gSS·h), respectively.

In the context of wastewater treatment facilities, the 
overall removal efficiency (R) of FEs, is commonly calcu-
lated using the formula provided in Eq. (4) [39].

where Ein and Eout represent the concentrations of natu-
ral estrogens in the influent and effluent, respectively. 
The FEs released post-deconjugation, such as E1, E2, 
and E3, subsequently undergo biodegradation processes. 

(3)ln
A

A0

= −kdec ×MLSS× t

(4)R =
Ein − Eout

Ein
× 100%

Fig. 1 Biodegradation processes of CEs (exemplified by E2-3S) [84, 85]
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Therefore, if CEs also exist, R should be calculated using 
Eq. (5) [39]

where Cin and Cout refer to the concentrations of FEs 
derived from CEs.

Key microbial species and metabolic mechanisms 
involved in the degradation of ces
As the understanding of the environmental impact of CEs 
deepens, researchers are committed to exploring effec-
tive biodegradation methods. An increasing number of 
bacteria in activated sludge, biofilms, and river sediments 
have been identified and isolated. Concurrently, with the 
advancement of biological sequencing and testing tech-
nologies, the biodegradation mechanisms and transfor-
mation pathways of CEs are gradually being refined.

Major bacteria involved in the degradation of ces
Within the intricate matrices of activated sludge, bio-
films, and riverine sediments, a diverse array of bacte-
rial strains with an exceptional capacity to degrade CEs 
has been identified [86–88]. Through rigorous analysis 
of 16S rRNA gene sequences, these bacterial isolates 
have been meticulously classified at the species level, 
encompassing a spectrum of genera such as Rhodo-
coccus, Pseudomonas, and Alcaligenes [44, 89, 90]. A 
particularly significant degrader is Escherichia coli (E. 
coli), which possesses a remarkable ability to secrete 
enzymes, including β-glucuronidase and arylsulfatase, 
which are pivotal for the hydrolysis of glucuronide- and 
sulfate-conjugated estrogens, respectively [59, 91–93]. 
In untreated domestic wastewater, the β-glucuronidase 
produced by E. coli demonstrates exceptional efficacy, 
facilitating the deconjugation of glucuronide-conju-
gated estrogens with notable ease [94–96]. Members 
of genera such as Streptomyces, Microbacterium, and 
Rhodococcus have been identified as prolific secretors 
of arylsulfatase enzymes, which hydrolyze sulfate-type 

(5)R =
Ein − Eout + Cin − Cout

Ein + Cin − Cout
× 100%

conjugated estrogens [44]. This enzymatic process not 
only aids in environmental detoxification but also ful-
fills the microbial requirement for inorganic sulfate, a 
crucial component of metabolic processes [97, 98]. In 
Streptomyces sp., sulfatase activity is observed in two 
distinct forms: one integrated within the cell mem-
brane and another intracellularly localized. Intracel-
lular sulfatase is specifically induced under conditions 
of inorganic sulfate scarcity, whereas membrane-bound 
sulfatase appears to be triggered by substrate pres-
ence or is regulated independently of sulfur demands 
[44]. Microbacterium and Rhodococcus bacteria dis-
play a pronounced predominance of sulfatase activity 
within their cell membranes, constituting an impres-
sive 98.75% of the total enzymatic activity [44]. In con-
trast, minimal sulfatase activity was detected within the 
intracellular and extracellular compartments, suggest-
ing a specialized adaptation for the degradation of con-
jugated estrogens [44]. Genomic DNA analysis of these 
three bacterial strains revealed candidate sequences 
associated with sulfatase activity, which exhibited a 
high degree of homology with known members of the 
sulfatase gene family. This finding suggests the presence 
of at least two distinct arylsulfatase genes within the 
genomes of Streptomyces sp., Microbacterium sp., and 
Rhodococcus sp., with one gene presumed to be intra-
cellular and the other likely associated with membrane 
structure, underscoring the complex interplay between 
these bacteria and their environmental niche [44].

In addition to the aforementioned genera, bacteria iso-
lated from river sediments have also demonstrated pro-
ficiency in degrading estrogen conjugates. Species such 
as Pseudomonas sp., Rhizobium sp., and Acinetobacter sp. 
have been recognized as active contributors to this envi-
ronmental detoxification process [67, 99]. The ability of 
diverse bacterial strains to degrade conjugated estrogens 
is a testament to their metabolic versatility and highlights 
their potential for bioremediation (Table  4). The meta-
bolic capabilities of these bacteria represent a significant 
area of interest for environmental microbiologists and 

Table 3 Estrogen conjugate conjugation rate constants

a Target compound concentration
b Biodegradation rate constant

Target Operation pH T(℃) Ci
a(ng/L) MLSS (g/L) kbio

b

(L/gSS/h)
Reference

E1–3S Aerobic 7.1 17 2348 4 0.00319 [34, 62]

E1–3G Aerobic 7.1 17 2517 4 0.0875 [39, 62]

E3–16G Aerobic 7.1 17 2323 4 0.06 [39, 62]

E2–3S Aerobic – – 5E4 4–12.5 0.0728–0.13 [39, 48]

E3–3G Aerobic – – 5E4 4–12.5 0.26–0.42 [39, 48]
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biotechnologists, offering insights into the vast potential 
of harnessing microbial communities for biodegradation 
of complex organic pollutants. Understanding the genetic 
and enzymatic mechanisms that drive these degrada-
tion processes is essential for devising targeted strategies 
for augmenting the natural detoxification capabilities of 
these ecosystems. As research in this domain continues 
to advance, it is expected that these bacterial strains will 
play an increasingly pivotal role in the development of 
next-generation bioremediation technologies, thereby 
contributing to the realization of a more sustainable and 
healthier environment.

Microbial metabolism of glucuronide‑conjugated 
estrogens
Current research on the enzymatic degradation and 
transformation of G-CEs predominantly focuses on the 
glucuronide forms of E1 and E2, while relatively few 
studies have been conducted on the conjugated form 
of E3 [64, 100, 103, 104]. The biodegradation of G-CEs 
relies on β-glucuronidase, which belongs to the glycoside 
hydrolase class. This enzyme is produced by bacteria, 
fungi, higher plants, and animals, and is widely present 
in sewage, activated sludge, soil, and sediments [67, 
101, 102]. E1-3G is completely cleaved to E1 under the 
action of β-glucuronidase and is subsequently utilized 
by microorganisms to achieve complete mineralization 
[105]. In contrast, the degradation pathway of E2-3G is 
more complex. The degradation of E2-3G follows a sim-
ple first-order kinetic model with rate constants (k) and 
half-lives  (t1/2) of 0.0355 and 18  h, respectively [20]. In 
environments where β-glucuronidase is abundant, E2-3G 
is primarily cleaved at the C3 position to form E2, which 
can be further oxidized to E1 [48, 106]. In conditions 
where β-glucuronidase is less available, oxidation at the 
C17 position can also occur, leading to the formation of 
E1-3G [16, 20]. The maximum percentage conversion of 
E2-3G to E2 was 34% (equivalent to a molar percentage 
of 56%), and after 4–9 days, approximately 20% of E2 was 
converted to E1 [20]. In addition to the aforementioned 

common metabolites, microbial degradation of E2-3G 
produces four novel products (metabolites I, II, III, and 
IV). Metabolites II, III, and IV have been identified as 
9,11-dehydro-E1,6-keto-E1, and estrone, respectively, 
while the structure of metabolite I remains unclear and 
may correspond to keto-E2 or hydroxy-substituted E1 
[20, 107–110]. Figure 2 shows the preliminary pathways 
of conjugated compound degradation. The degradation 
of E2-3G primarily involves the oxidation of hydroly-
sis products E2 and/or E1, followed by hydroxylation, 
desaturation, and lactonization to form hydroxy-E1, 
9,11-dehydro-E1, and estrolactone; additionally, E2 and 
E1 can be further transformed into Keto-E1 [111–113]. 
Hydroxy-E1 is a pivotal intermediate in the estrogen deg-
radation pathway [114]. It undergoes oxidative cleavage 
via the 4,5-seco pathway, leading to the formation of HIP 
[40, 84]. Eventually, portions of these compounds are fur-
ther mineralized into  CO2.

Microbial metabolism of sulfate‑conjugated estrogens
Under both aerobic and anaerobic conditions, the bio-
transformation pathways of sulfate-conjugated estro-
gens exhibit significant differences, particularly for 
17α-estradiol-3-sulfate present in wastewater [63, 115]. 
This distinction was attributed to the varying metabolic 
processes that occur under these two distinct envi-
ronmental conditions. Two principal mechanisms are 
responsible for this degradation. The first involves decon-
jugation, wherein bacteria present in wastewater synthe-
size arylsulfatases capable of cleaving the thioester bond 
at the C3 position of 17α-estradiol-3-sulfate, thereby 
releasing 17α-estradiol into the environment [67, 91]. 
The second mechanism is an oxidation process in which 
17α-estradiol-3-sulfate is transformed into estrone-3-sul-
fate in the presence of oxygen [116, 117]. Aerobic degra-
dation is predominantly characterized by oxidation at the 
C17 position of the 17β-estradiol-3-sulfate ring, rather 
than cleavage of the thioester bond at C3 [118]. Diverse 
degradation products, such as 6-keto-E1, 9,11-dehydro-
E1, and estrolactone, have been identified in E2-3S, 

Table 4 Confirmed CEs degrading functional bacteria

Type of enzyme Genus Species Reference

Arylsulfatase Pseudomonas Pseudomonas aeruginosa [72, 99]

Arylsulfatase Rhodococcus Rhodococcus sp. [44, 74]

Arylsulfatase
β-glucuronidases

Escherichia Castellani and Chalmers Escherichia coli [20, 59]

Arylsulfatase Streptomyces Streptomyces griseorubiginosus [44, 74]

Arylsulfatase Microbacteriaceae Microbacterium sp. [100]

Arylsulfatase Acinetobacter Acinetobacter calcoaceticus [101]

β-glucuronidases Clostridium Clostridium sp. [102]
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highlighting a divergence from the degradation profile of 
E2-3G [118]. The degradation of E2-3S was particularly 
notable for the formation of various sulfate-conjugated 
intermediates (Fig. 3a). This includes the potential iden-
tification of sulfate-conjugated hydroxy-E1 and sulfate-
conjugated keto-E1 as the degradation products. Under 
aerobic conditions, E2-3S undergoes initial oxidation to 
E1-3S [39]. Subsequently, E1-3S is deconjugated, and E2 
is oxidized to form E1 [81, 119–121]. Nevertheless, the 
degradation of sulfate-conjugated estrogens is impeded 
by the constrained activity of arylsulfatases in the envi-
ronment, resulting in a significant fraction of estrogens 
undergoing hydroxylation and ketogenesis [60, 82, 105]. 
Consequently, the biotransformation of sulfate-conju-
gated estrogens within wastewater treatment systems is 
intricate.

The anaerobic degradation of S-CEs proceeds at 
a slower pace than that of aerobic processes [82, 118, 
122]. In anaerobic settings, deconjugation emerges as 
the predominant mechanism, with markedly dimin-
ished oxidative conversion. The initial product of the 
E2-3S degradation was E2, as depicted in Fig. 3b, with 
only a marginal generation of E1-3S [118]. Under oxy-
gen-deprived conditions, both E1-3S and E2 are sus-
ceptible to thioester bond cleavage and subsequent 
oxidation, leading to the formation of E1 [62, 82, 
123]. Consequently, E1, which appears as a secondary 

degradation product, originates from the metabolic 
conversion of E2 and E2-3S.

Factors affecting the microbial degradation of ces
Biodegradation has been demonstrated to be an effective 
strategy for the elimination of CEs, a process that was 
intrinsically linked to the action of microorganisms. The 
influence of various environmental factors on the biodeg-
radation of CEs has been delineated, with some factors 
directly impacting enzymatic activity and others shaping 
the composition of microbial communities. The sum-
marized findings in Table  5. underscore the significant 
impact of these factors on the efficacy of CE removal.

Temperature
The removal rate of CEs is significantly related to tem-
perature, as temperature can influence the activity of 
arylsulfatase and β-glucuronidase as well as the abun-
dance of bacteria containing these enzymes, which in 
turn affects the deconjugation process of CEs [39, 124]. 
A robust correlation has been identified between the 
increase in temperature and the concomitant decrease 
in the concentration of conjugated compounds within 
the aqueous phase of activated sludge, with a coefficient 
of determination (R2) reaching an impressive 0.994 [62]. 
Upon elevating the operating temperature from 15 to 

Fig. 2 Pathways for biotransformation of E2-3G [84, 110–114]
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35  °C, the aerobic degradation rate of 17α-estradiol-3-
sulfate increased by a factor of approximately 92. By con-
trast, the corresponding anaerobic process exhibited an 
11-fold increase [118]. In two full-scale wastewater treat-
ment facilities, a decrease in temperature of 6  °C led to 
a 20% decrease in the removal efficiency of E1-3S [125]. 

The degradation rate of estrogen conjugates at different 
temperatures can be represented by a pseudo-first-order 
kinetic model [67]:

where k is the temperature-dependent biodegradation 
rate constant of 17α-estradiol-3-sulfate, [C] is the con-
centration of estrogen, and [C]0 is the initial concen-
tration of estrogen. Within the temperature range of 
15–35  °C, the influence of temperature on the degrada-
tion rate of estrogen conjugates can be quantified using 
the Arrhenius equation [117]:

(6)ln([C]) = −kt + ln [C]0

(7)lnk =
−Ea

RT
+ lnA

Fig. 3 Pathways for the biotransformation of E2-3S under aerobic conditions (a) and anaerobic conditions (b) [82, 115–123]

Table 5 Factors affecting the biodegradation of CEs

Factor Correlation Reference

R2 p

Temperature 0.731 0.005 [19]

pH 0.73-0.99 - [66]

Mixed liquor suspended solids 0.94-0.99 - [66]

Solids retention time 0.36-0.594 0.005 [19, 51]
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where A is the pre-exponential factor, Ea is the activation 
energy, R is the universal gas constant, and T is the abso-
lute temperature (in Kelvin).

DO and ph
In addition to temperature, dissolved oxygen (DO) lev-
els in the environment also significantly influence the 
biological removal of CEs [20, 118]. Arylsulfatases pos-
sess a highly conserved amino acid sequence that forms 
the active site after post-translational modification of 
cysteine or serine residues into  Cα-formylglycine resi-
dues, and it is only after this mechanism that arylsul-
fatases can exert their activity [126, 127]. However, this 
mechanism is an oxygen-dependent process that requires 
molecular oxygen as a cofactor; hence, the biodegrada-
tion of sulfate-conjugated estrogens in wastewater is an 
oxygen-dependent process [74]. Studies have shown that 
more than 95% of E2-3S is degraded under aerobic con-
ditions, whereas under anaerobic conditions, the degra-
dation rate is only 25% [118]. The majority of estrogens 
exhibit swift biodegradation under aerobic conditions, 
with half-lives typically not exceeding one day across a 
range of environmental substrates [128–130]. Conversely, 
the rate of anaerobic degradation of E2-3S was markedly 
lower than that of its aerobic counterpart. Consequently, 
the reduced degradation efficiency in anaerobic settings 
can potentially contribute to the prolonged presence of 
these estrogens in specific environmental contexts.

Environmental pH significantly influences the micro-
bial degradation efficiency of CEs due to its impact on 
both the adsorption of substances by activated sludge and 
the activity of biological enzymes. The adsorption capac-
ity of the sulfate functional groups present in E1-3S and 
E2-3S is inversely related to the environmental pH [66]. 
Specifically, at low pH values, sulfate ions form robust 
complexes with certain surface sites, which are not easily 
desorbed [131]. However, the presence of some organic 
ligands facilitates the removal of sulfate in acidic condi-
tions more effectively than in neutral or alkaline envi-
ronments [66]. Consequently, under acidic conditions, 
sulfate functional groups are likely to establish strong 
sulfate bonds with activated sludge, in addition to hydro-
gen bonding, thereby enhancing the adsorption of S-CEs 
[66]. Moreover, the enzymes implicated in deconjugat-
ing CEs, such as β-glucosidase and arylsulfatase, demon-
strate pH-dependent activity, with optimal performance 
observed under acidic conditions(pH < 6.2) [132]. This 
pH dependency underscores the importance of environ-
mental pH in the biological treatment processes for the 
degradation of CEs in wastewater.

MLSS and SRT
The mixed liquor-suspended solids (MLSS) have a sig-
nificant impact on the biodegradation rate of CEs [133]. 
The Michaelis–Menten Model (Eq.  (8)) can effectively 
describe the degradation kinetics of CEs at various 
MLSS. As the MLSS increases, the deconjugation rate of 
CEs becomes higher (Table  6) [48]. This may be due to 
the higher concentrations of extracellular and intracellu-
lar enzymes in the sludge system at higher MLSS levels, 
allowing bacteria in the activated sludge to utilize CEs.

where C is the concentration of a chemical compound in 
a sludge solution, Vm is the maximum reaction rate, and 
Km is a Michaelis constant.

Solids retention time (SRT) shows a significant correla-
tion with the removal efficiency of CEs (R2 = 0.36–0.594, 
p < 0.05) [19, 32], particularly for E1-3S and E2-3S, which 
seem to have the highest removal rates starting from the 
8th to 9th day of SRT (> 99% removal efficiency) [32]. A 
longer SRT allows the sludge to develop a more diverse 
microbial community and enrich slowly growing micro-
organisms that may degrade CEs [134]. Additionally, the 
relative abundance of hydrophobic bacteria increases, 
which helps to enhance the adsorption capacity of the 
activated sludge for CEs [19]. Therefore, as the age of the 
sludge increases, that is, with the rise of SRT in WWTPs, 
the removal efficiency of CEs is improved [135].

Conclusion and outlook
This article reviews the biodegradation of CEs in waste-
water, providing an overview of CEs-degrading bacte-
ria, transformation mechanisms, potential pathways, 
and influencing factors. Although some CEs-degrading 
strains have been isolated, our understanding of the 
biodegradation products and metabolic mechanisms of 
CEs is still relatively limited at present. Future research 
needs to reveal more CE biodegradation pathways 
and related genes to promote a deeper understand-
ing of this field. Biodegradation has been proven to be 

(8)
dC

dt
= −

Vm × C

Km + C

Table 6 Deconjugation rates of CEs at different MLSS 
concentrations

Compounds Parameters MLSS (g/L)

4 7 12.5

E2-3G Vm 141.1 317.70 382.70

Km 96.02 108.10 92.07

E2-3S Vm 26.12 36.60 57.02

Km 50.40 61.17 62.36
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the main pathway for the transformation of CEs and is 
expected to develop into a promising CE removal tech-
nology. However, research in this field still faces some 
challenges, which leads to most studies remaining at 
the laboratory stage. First, under complex environmen-
tal conditions, multiple microorganisms coexist, and 
current research on CEs in wastewater mainly focuses 
on detection methods and environmental behavior. 
The role of microbial species and their interactions in 
the biodegradation process of CEs needs further study. 
When necessary, integrated comics approaches can be 
used to deeply explore the biodegradation mechanisms 
of microbial communities. Another challenge for the 
biodegradation of CEs is the presence of various types 
of organic pollutants in wastewater. CEs often coexist 
with other pollutants in the environment, so developing 
microorganisms that can degrade multiple pollutants 
simultaneously has important research value. Finally, 
strains with degradation functions require further 
research and exploration, their viability, persistence, 
optimal operating conditions, impact on local microbial 
communities, and potential ecological risk assessments 
in practical applications. These factors are crucial for 
the transformation of CE biodegradation technology 
from the laboratory to practical applications.
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